The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA Degradation and Development
نویسندگان
چکیده
DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary role, and crn-7 plays a negligible role in resolving 3' OH DNA breaks generated in apoptotic cells. Promoter swapping experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of NUC-1 secretion signal eliminates NUC-1's ability to mediate DNA degradation across its expression border. Furthermore, blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts in apoptotic cells rather than in phagocytes to resolve 3' OH DNA breaks. Our study illustrates how multiple DNase II nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase II action in mediating DNA degradation.
منابع مشابه
NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis.
One hallmark of apoptosis is the degradation of chromosomal DNA. We cloned the Caenorhabditis elegans gene nuc-1, which is involved in the degradation of the DNA of apoptotic cells, and found that nuc-1 encodes a homolog of mammalian DNase II. We used the TUNEL technique to assay DNA degradation in nuc-1 and other mutants defective in programmed cell death and discovered that TUNEL labels apopt...
متن کاملAutonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos
Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In th...
متن کاملToll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation
Deoxyribonuclease (DNase) II in macrophages cleaves the DNA of engulfed apoptotic cells and of nuclei expelled from erythroid precursor cells. DNase II-deficient mouse embryos accumulate undigested DNA in macrophages, and die in feto because of the activation of the interferon beta (IFNbeta) gene. Here, we found that the F4/80-positive macrophages in DNase II(-/-) fetal liver specifically produ...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملDNase II and the Chk2 DNA damage pathway form a genetic barrier blocking replication of horizontally transferred DNA.
We have previously shown that DNA from dying tumor cells may be transferred to living cells via the uptake of apoptotic bodies and may contribute to tumor progression. DNA encoding H-ras(V12) and c-myc oncogenes may be transferred to the nucleus of the phagocyte but will only integrate and propagate in p53- and p21-deficient mouse embryonic fibroblasts, whereas normal cells are resistant to tra...
متن کامل